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Abstract 

Di Wu PARALLEL MONTE CARLO SIMULATIONS OF LIGHT PROPAGATION IN 
TURBID MEDIA. (Under the direction of Dr. Jun Qing Lu) Department of Physics, July 
2000. 
 

We have carried out investigation on light propagating in turbid media using parallel 

Monte Carlo method. Through this project, we built a 32-node UNIX cluster to provide a 

powerful parallel computing environment and successfully converted sequential Monte 

Carlo simulation program to parallel program using both MPI and PVM message passing 

parallel computing interface software packages. In addition, random number generator 

algorithms are carefully studied and a portable parallel random number generator has 

been developed to meet our parallel Monte Carlo simulation needs. These developments 

are then used to carry out large-scale numerical simulations of a converging light beam 

propagating through a biological tissue slab. Our results on the dependence of the photon 

density at the focal point on the attenuation coefficient µt show that the peak observed 

there is formed by the unattenuated photons. The results of statistical distributions of the 

reflected and transmitted photons show that the reflected photons experience much less 

scattering than those of transmitted. The dependence of the reflectivity, transmittance, 

and absorption of the incident light on the parameters µt and g has also been studied. 
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1. Introduction 
 
1.1 Background 

Light scattering in the turbid media has been studied extensively in the past 

[Ishimara, 1978]. Many attempts have been made to provide reasonably accurate, and yet 

feasible, models of light propagation in turbid media. However, the existing theoretical 

models are still not satisfactory for explaining the experimental data in many important 

applications related to the light propagation in highly scattering turbid media such as 

biological materials. Understanding the interaction between light and biological materials 

is critical in the development of new optical methods for biomedical imaging 

applications. For this purpose, it is essential to develop efficient modeling tools in the 

investigation of interaction between laser radiation and turbid media. 

In a turbid medium, light is scattered and absorbed due to the inhomogeneities 

and absorption characteristics of the medium. When the medium becomes highly 

scattering, multiple scattering effects become dominant, and one widely used approach to 

solve this type of problem is the radiative transfer theory [Chandrasekhar, 1960] - which 

concerns only the energy transportation. Within the framework of the radiative transfer 

theory, light propagation in a turbid medium is treated as a large number of photons, 

which have no phase and polarization characteristics, which undergo random scattering 

and absorption processes. However, the radiative transfer equation cannot be solved 

analytically without approximations except for a few cases with simple boundary 

conditions. Among these are the first-order solution [Ishimaru, 1978], the discrete 

ordinates method [Ishimaru, 1978], the Kubelka-Munk two-flux and four-flux theory 
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[Wan, 1981], and the diffusion theory [Johnson, 1970]. These methods all have their 

limits. 

Light propagation in turbid medium can be simulated statistically by Monte Carlo 

methods [Wilson, 1983]. Using a simple model of random walk, a Monte Carlo method 

can be applied to solve radiative transfer problems accurately with virtually any boundary 

conditions. Among many Monte Carlo methods used to simulation light–tissue 

interaction, a recently developed Monte Carlo method using a “time slicing” algorithm 

can be used to directly calculate light distribution with inhomogeneous boundary 

conditions [Song, 1999]. Two examples of the inhomogeneous boundary conditions are: 

a converging laser beam incident on a tissue phantom with a plane surface in which the 

incident angle varies with the photon location; a tissue phantom with rough interfaces in 

which the incident angle varies with fluctuating direction of the surface normal even for a 

collimated beam. 

1.2 Goal and Significance of the Thesis Research 

Monte Carlo method offers a flexible yet rigorous approach toward modeling of 

photon transportation inside highly scattering media. This method, however, relies 

heavily on computer tracking of the propagation paths of individual photons in the 

medium. It is very computationally intensive due to the statistical nature of the large 

number of photons needed to achieve precision and resolution. On the other hand, the 

uncorrelated-photon nature in the Radiative Transfer Theory makes this problem a unique 

candidate for parallel processing. 



    3

The goal of this thesis is to implement parallel computing techniques in the Monte 

Carlo simulation of light propagating in turbid media and to use the parallel Monte Carlo 

method to investigate various phenomena associated with light propagation in a slab of 

turbid medium for a converging incident beam. Due to the inhomogeneous boundary 

condition in the studied system, the “time-slicing” Monte Carlo method discussed earlier 

will be used to carry out the simulations. 

By implementing parallel computation techniques in the Monte Carlo simulation, 

we can significantly reduce the program running time and made future large-scale 

simulations possible. These parallel computation techniques can also be used to increase 

the performance of other scientific calculations. 

In this project, we first built a 32-node PC cluster with CPUs at 433~500 MHz to 

accommodate the need for parallel computing and then ported the sequential Monte Carlo 

program to parallel program based on message passing model. And much effort was 

made to search for a portable parallel random number generator to meet our Monte Carlo 

simulation needs. Large-scale numerical simulations of a converging light beam 

propagating through a biological tissue slab was then carried out utilizing this system.  

The material of this thesis is arranged as follows: In Chapter 2 we describe in the 

radiative transfer theory and the Monte Carlo method. Chapter 3 will give a detailed 

discussion of the parallel computing algorithms, our implementation in our Monte Carlo 

simulation, and the PC parallel network setup. Chapter 4 will discuss the random number 

generator algorithms and the development of our portable random number generator. In 

Chapter 5 we present our parallel Monte Carlo simulation results for a converging light 
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beam propagating through a biological tissue slab. Chapter 6 gives a brief summary of 

the work. Detailed information about PC cluster setups, message passing interface 

software packages PVM and MPI setups, a random number generator package, SPRNG, 

used for random number generators testing in this thesis, and our parallel program codes 

can be found in the Appendices. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2. Theoretical Framework 

Light (electromagnetic waves in general) interaction with condensed matter can 

be treated as waves based on Maxwell’s equations. This approach, however, encounters 

fundamental difficulties when applied to condensed media whose responses are of 

random nature in both space and time, such as the biological soft tissues. Furthermore, 

when the linear size of the biological cells in the soft tissues are comparable to the light 

wavelength, substantial elastic scattering may occur that needs to be accounted for in any 

realistic models. In these cases, the radiative transfer theory often serves as a feasible 

framework that can be used to understand the light propagation in biological tissue. In 

this chapter we will first introduce the radiative transfer theory and then give a detailed 

discussion of the methodology of the Monte Carlo simulation of light propagating 

through a slab of turbid medium. 

2.1 Radiative Transfer Theory  and Monte Carlo Method  
 

In radiative transfer theory, the light, or photons, is treated as classical particles 

and the polarization and phase are neglected. This theory is described by an equation of 

energy transfer which can be expressed in a simple form [Chandrasekhar, 1950], 

ℑ+−= tt Ids
dI µµ         (2.1.1) 

where I is the light radiance in the unit of W
m steradian2 ⋅

, ),( srIs
ds
dI ��

�

� ∇⋅= , µt is the 

attenuation coefficient defined as the sum of the absorption coefficient µa and scattering 

coefficient µs, and ℑ  is a “source” function. The vector r�  represents the position in the 
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medium and the unit vector s�  the direction of propagation of a light energy quantum or 

photon. In highly scattering (or turbid) and source-free medium, such as the laser beam 

propagating in biologic tissues, the source function ℑ  can be written as: 

''

4

' ),(),(
4
1),( ΩΦ=ℑ ∫ dsrIsssr ������

ππ
.      (2.1.2) 

The phase function ),( 'ss ��Φ  describes the probability of light being scattered 

from the 's� into the s�  direction and dΩ' denotes the element of solid angle in the 's�  

direction. Then the equation of transfer becomes: 

''

4

' ),(),(
4

),(),( ΩΦ+−=∇⋅ ∫ dsrIsssrIsrIs t
t

��������

�

�

ππ
µµ  .   (2.1.3) 

If the scattering is symmetric about the direction of the incoming photon, the 

phase function will only be a function of the scattering angle sϕ  between 's�  and s� , i.e., 

'( , ) ( )ss s ϕΦ = Φ� � . A widely used form of the phase function was proposed by Henyey and 

Greenstein [Henyey et al, 1941], defined as, 

2

3
2 2

(1 )( )
(1 2 cos )

s

s

g

g g

γϕ
ϕ

−Φ =
+ −

      (2.1.4) 

where γ is the spherical albedo and g is the asymmetry factor given by 

'

4

1 ( )cos
4 s sg d

π

ϕ ϕ
πγ

= Φ Ω∫        (2.1.5) 

'

4

' ),(
4
1 ΩΦ= ∫ dss

ππ
γ ��

t

s

µ
µ=        (2.1.6) 
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The phase function is often normalized to describe the angular distribution of 

scattering probability, thus the phase function is represented by a new normalized 

function ),( 'ssp �� :  

2

3
2 2

( ) (1 )( )
4 4 (1 2 cos )

s
s

s

gp
g g

ϕϕ
πγ π ϕ

Φ −= =
+ −

     (2.1.7) 

1),( '

4

' =Ω∫ dssp
π

��         (2.1.8) 

Assuming that the scattering and absorbing centers are uniformly distributed in 

tissue and considering only elastic scattering, the radiance distribution in soft tissues may 

be divided into two parts, the scattered radiance Is and the unattenuated radiance Iu 

[Ishimaru, 1978] 

 ),(),(),( srIsrIsrI su
������ +=        (2.1.9) 

The reduction in the unattenuated radiance, i.e., the portion of the incident 

radiation which has never been scattered nor absorbed, is described by: 

),(
),(

srI
ds

srdI
ut

u ��

��

µ−=                  (2.1.10) 

And the scattered radiance in a turbid medium can be obtained through 

''

4

'''

4

' ),(),(),(),(),(),( Ω+Ω+−=∇⋅ ∫∫ dsrIsspdsrIsspsrIsrIs ussssts
�������������

ππ

µµµ . 

                     (2.1.11)  

The first term on the right-hand side of (2.1.11) accounts for the attenuation by 

absorption and scattering. The second term on the right-hand side of (2.1.11) represents 

the radiance contributed by photons experienced multiple scattering in the medium, while 
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the third term describes the radiance contributed by the single scattering of photons from 

the unattenuated part. 

In principle, it is adequate to analyze the light propagation in turbid medium 

though Eqs. (2.1.1)-(2.1.11) with proper boundary conditions. However, due to the 

complexity of Eq. (2.1.11), the general solutions are not available for the radiative 

transfer equation. Only a few analytical results have been obtained for cases of very 

simple boundary conditions. As discussed in Chapter 1, many approximation methods 

have been developed and in many cases numerical methods have to be resorted to solve 

radiative transfer problems. Among them, the Monte Carlo simulation provides a simple 

and yet widely applicable approach to solve this type of problems.  

Since Wilson and Adam first introduced Monte Carlo simulation into the field of 

laser-tissue interactions to study the steady-state light distribution in biological tissues in 

1983 [Wilson, 1983], it has acquired considerable attention in the studies of interaction 

between the visible or near-infrared light and the biological tissues over the past decades 

and different approaches have been developed [Keijzer, 1989; van Gemert, 1989; 

Schmitt, 1990; Miller, 1993; Wang, 1995; Garner, 1996; Wang, 1997; Song 1999]. 

Among them, a recently developed Monte Carlo method using a “time slicing” algorithm 

[Song 1999] can be used to directly calculate light distribution with inhomogeneous 

boundary conditions [Song, 1999], that is the method to be used in this thesis. 
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2.2 Methodology of the Monte Carlo Simulation 

In this thesis, we study light propagating through a slab of turbid medium for a 

converging light beam, and the physical system is displayed in Fig. 2.1. A detailed 

description of the methodology of the Monte Carlo method applied to present case is 

given below.  

 

 

 

 

 

The converging beam is incident on the slab from the air, it has an intensity 

profile of 
22 /

0( ) weI I ρρ −
� , where ρ is the distance from the axis of the beam, w the a 

radius of the beam at the air-tissue interface, and I0 the intensity on beam axis. It has a 

cone angle of α, its focal point in the absence of the tissue slab is located at a distance F 

O

F

α

z

tissue 

air 
y

D 

air 

w 

Deposit 

Zf 

Fig. 2.1 Schematic of the system studied in this thesis: a focused laser beam propagating 
through a tissue slab. Where α is the cone angle and w is the radius of the beam at the 
entrance surface. The tissue slab has a thickness of D and an index of refraction of n. 
The dashed line indicates the focal point in the absence of the tissue slab that is located 
at a distance F below the entrance surface. In the presence of the slab, the beam will be 
focused in a spreading line along z-axis centered at a distance Zf below the entrance 
surface.  
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below the entrance surface. In the presence of the slab, the beam will be focused in a 

spreading line along z-axis centered at a distance Zf below the entrance surface. A 

Cartesian coordinate system is used for the simulation with the origin set on the beam 

axis at the entrance surface or the xy-plane. The slab is assumed to be macroscopically 

homogeneous with a thickness of D. It is optically characterized by an index of refraction 

n, scattering coefficient sµ , absorption coefficient aµ , and anisotropy factor g.  The 

propagation of a photon in the medium is described by its position and propagating 

direction, where the position is described by the Cartesian coordinates, and propagation 

direction is described by a set of moving spherical coordinates (φ, ψ) attached to the 

photon. The boundary condition at the z = 0 plane for each photon contained in the beam 

are decided by its position at the entrance surface (x0, y0) and its incident angle. The 

incident angle of each photon is to be calculated according to its distance ρ0 = 2 2
0 0x y+  

from the z-axis and the distance between the focal point of the beam in the absence of the 

slab and the entrance surface, F.  At the entrance surface, a photon will either be refracted 

or reflected according to a probability decided by the Fresnel reflectivity at the photon’s 

incident angle. The reflected photons are not considered further.  

If a photon passes through the entrance surface, it starts to propagate inside the 

material in the direction of the refraction angle until scattered or absorbed. When a 

scattering occur, the scattering angle, φs, i.e. the angle between the propagation directions 

before and after scattering, is randomly chosen from a distribution governed by the 

Henyey-Greenstein phase function [Henyey, 1941]. The azimuthal angle, ψs, is randomly 

chosen to determine the projection of the new direction of the scattered photon in the 
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plane perpendicular to the original one. Both of the angles can be found from the 

following equation: [Keijzer, 1989] 

]))
21

1(1[
2
1(cos 2

2
21

gRNDg
gg

gs +−
−−+= −ϕ       (2.2.1) 

RNDs πψ 2=            

where RND is a random number ranging from 0 to 1. If the photon direction 

before scattering is given by (φ,ψ), the photon direction after scattering, (φ’,ψ’), can be 

related to (φ,ψ) and (φs, ψs) as [Keijzer, 1989] 

)cossinsincos(coscos 1
sss ψϕϕϕϕϕ +=′ − ,                                       (2.2.2)              

1

1

tan (sin sin / ), 0
' {

tan (sin sin / ) , 0
s s

s s

for
for

ψ ϕ ψ α α
ψ

ψ ϕ ψ α π α

−

−

+ >
=

+ + <
    (2.2.3) 

ϕψϕϕϕα coscossinsincos sss −= .       (2.2.4)  

The distance traveled by a photon between successive scattering events, Ls, is 

randomly chosen from an exponential distribution function and given 

by ss RNDL µ/)1ln( −−= with a mean value 1 /s sL µ< >=  [Keijzer, 1989]. If a photon 

travels in a direction (φ,ψ) after a scattering event at (x, y, z) and the next scattering 

occurs at point (x’, y’, z’) of a distance Ls away, the coordinates of these two points are 

related through the following relations 

ϕ
ψϕ
ψϕ

cos'
sinsin'
cossin'

s

s

s

Lzz
Lyx
Lxx

+=
+=
+=

.         (2.2.5) 
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As for the photon absorption, we used an approach different from previously 

published ones [Wilson, 1983; Keijzer, 1989] because it offers a clear and intuitive way 

to the direct calculation of light distribution. For any photon which passed through the 

entrance surface, a life-time traveled distance in the medium, La, is first determined to 

predetermine the distance the photon may travel in the medium before it is absorbed. For 

an arbitrary photon, La is randomly chose according to an exponential distribution 

function and given by aa RNDL µ/)1ln( −−=  with a mean 1 /a aL µ< > =  [Keijzer, 1989].  

In this thesis we are interested in the distribution of the transmitted light near the 

geometric focal point at z = Zf of the refracted incident beam for a cw incident beam. To 

obtain the light distribution, a cubic region surrounding the focal point (which is 

indicated by the deposit region in Fig. 2.1) is selected and divided into cubic grid cells, 

and each cell has a register which will count the number of photons falling in the cell. 

According to a “time-slice” method [Song 1999], the total number of photons falling into 

one cell from an impulse beam can be used to calculate the steady-state number of 

photons in that cell for a cw beam. Thus the registers of the cells will provide the photon 

density distribution in the deposit region.  

We track each photon along its 3-d trajectory and record its total traveled 

distance, L, in the medium at each scattering event. Before the photon is allowed to 

propagate further, L is compared with the predetermined La. If L > La, the photon is then 

eliminated as a result of absorption. Otherwise the photon’s position is further checked to 

determine if it is on a boundary of the considered region in the turbid material. When the 

photon is on the exit air-phantom boundary, it will be either reflected back into the 
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material, with a probability equal to the Fresnel reflection coefficient, or refracted into 

the air. If it is refracted into the free-space region above the tissue, it will not be tracked 

further. If it is refracted into the free-space region below the slab, i.e. the transmission 

region, it will be further checked to see if it falls into the deposit region where its 

presence will be recorded by the registers in each cell as it passes through. The photon 

will also be eliminated if it reaches other borders of the considered region. If the photon 

survives these tests it will be allowed to propagate further until one of the eliminating 

conditions is met. The procedures are repeated to the next photon until all the photons 

contained in the beam are depleted.  



 3. Parallel Computing 

In this chapter we discuss basic algorithms of parallel computing and the 

implementation of such techniques into our Monte Carlo simulation. Two major parallel 

computing interface libraries – PVM and MPI - are introduced. A brief description of our 

parallel computing network is given at the end of the chapter. 

3.1 Parallel Computing Algorithms 

Parallel computing method is to divide a large computational problem into many 

smaller tasks for simultaneous execution on multiple processors. This can be achieved 

through two approaches: massively parallel processors (MPPs) and distributed 

computing.  

The MPPs systems combine multiple CPUs, ranging from a few hundred to a few 

thousand, in a single large cabinet sharing common memory (usually hundreds of 

gigabytes). MPPs offer enormous computational power and are used to solve problems 

such as global climate modeling and drug design. As simulations become more and more 

complex, the computational power required to produce significant results within 

reasonable amount of time grows rapidly. Thus, parallel computing through MPPs has 

provided a practical approach to obtain the large computational power beyond what the 

fastest sequential supercomputer can offer. MPPs systems typically require special design 

and thus demand high cost for their high computing performance. 

 The second approach for parallel computing can be achieved by distributed 

computing. Distributed computing is a process whereby computers connected through a 
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network are used collectively and simultaneously to solve a single large problem. As 

more and more organizations have high-speed local area networks interconnecting many 

general-purpose workstations, the combined computational resources may exceed the 

power of a single high-performance computer. In some cases, several MPPs have been 

combined using distributed computing to produce unequaled computational power. The 

most attractive feature of the distributed computing approach lies in its low cost. 

Networked workstations or PCs for distributed computing typically cost only a fraction of 

that for a large MPPs system with comparable performance.  

Both distributed computing and MPP can use message passing model to 

coordinate parallel computing tasks. In parallel processing, data must be exchanged 

between tasks. Several paradigms have been employed including shared memory, 

parallelizing compilers, and message passing. The message-passing model has become 

the paradigm of choice for its wide support by various hardware and software vendors 

[Geist, 1994]. 

Two major software packages and standards are currently used for message 

passing in distributed systems of paralleling computing. They are PVM (Parallel Virtual 

Machine) from Oak Ridge National Laboratory and University of Tennessee and MPI 

(Message Passing Interface) developed by MPI Forum (a group of more than 80 people 

from 40 organizations, including vendors of parallel systems, industrial users, industrial 

and national research laboratories, and universities) [Snir, 1998]. Both PVM and MPI 

support C/C++ and FORTRAN programming languages and can be used on MPP and 

distributed systems.  
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PVM enables a collection of heterogeneous computer systems to be viewed as a 

single parallel virtual machine. The PVM system is composed of two parts. The first part 

is a daemon (a process running on the background on UNIX system) called pvmd that 

resides on all computers making up the virtual machine. The daemon pvmd is designed so 

any user with a valid login can install the daemon on a machine. A user can run a PVM 

application by first starting up PVM to create a virtual machine. The PVM aplication can 

then be started from a UNIX prompt on any host.  The second part of the PVM system is 

a library of PVM interface routines. It contains a functionally complete set of primitives 

that are needed for coordinating tasks of an application, e.g., user-callable routines for 

message passing, spawning processes, coordinating tasks, and modifying the virtual 

machine. 

MPI is a software package that facilities message passing between different 

processors for either MPPs or distributed systems. Unlike PVM, MPI doesn’t require an 

active daemon running on each processor. Version 1 of MPI standard (MPI-1) was 

released in summer 1994. Since its release, the MPI specifications have become the 

leading standards of message-passing libraries for parallel computing. More than a dozen 

implementations exist on a wide variety of platforms. Every vendor of high-performance 

parallel computer systems offers an MPI implementation for heterogeneous networks of 

workstations and symmetric multiprocessors. An important reason for the rapid adoption 

of MPI was the representation on the MPI forum by all segments of the parallel 

computing community: vendors, library writer and application scientists. MPI and PVM 
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are compatible in the sense that they are both based on the message passing model and 

they can be ported easily from one to the other [Snir, 1998]. 

In summary, parallel processing on a distributed system with PVM or MPI is an 

efficient tool for large-scaled scientific computation and simulation.  It can solve 

extremely computing-intensive scientific problems, which in the past can only be solved 

using MPPs, at an affordable cost.  

3.2 Introduction to PVM and MPI Interfaces  

To use PVM and MPI libraries, we need to download and install their software 

packages, and then setup the necessary environments.  

Here, we illustrate the different methods of message passing through an example, 

which adds the integers from 1 to 1000 using parallel computing libraries.  In our 

implementation, first we obtain the total number of machines in the virtual machine and 

then divide the integer sequence (1,2,3,…,1000) into blocks according to the machine’s 

assigned number, and sum each block simultaneously on different machines. Finally, a 

“control” program collects all partial additions from each machine and add them to get 

the final result. (The programs are using pseudo-code for brevity.) 

program summation
implicit none
include ‘fpvm3.h’
integer nhost,mytid,myparent
processor(process);
final_result: final result of the summation
integer partial_result,final_result
! length: the length of each block in the summation; from: the
!beginning integer of each block; to: the ending integer of each
!block.
integer length,from,to
! group name, each processor join the group to get the group instance
number (from 0 to nhost-1)
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character*32 groupname
integer inst_num ! instance number
...
! Initialization
partial_result=0
final_result=0
groupname=’summation_group’

call pvmfmytid(mytid) ! get my task id
call pvmfparent(myparent) ! get my parent’s task id
call pvmfconfig(nhost,narch,dtid,host,arch,speed,info)
call pvmfjoingroup(groupname,inst_num)

if (myparent.eq.PvmNoparent) then !for parent process
write(*,*) “There are “,nhost,” hosts in the virtual machine.”
call pvmfspawn(‘summation’,PvmTaskDefault,where,nhost-

1,tids,num)
! spawn(fork) 1 child process on each of other computers
end if

call pvmfbarrier(groupname,nhost,info) !syncronization
!get instance number
call pvmfgetinst(groupname,mytid,inst_num)
call pvmfbarrier(groupname,nhost,info) !syncronization

length=MAX/nhost
from=inst_num*length+1
to=from+length-1
if (inst_num.eq.nhost-1) then

to=MAX
end if
! Calculate my partial result
do i=from,to

partial_result=partial_result+i
end do

if (myparent.eq.PvmNoParent) then ! For parent process
! partial result of myself
final_result=partial_result
! collect other’s partial results and add them up
do i=1,nhost-1

call pvmfrecv(-1,TAG,bufid)
call pvmfunpack(INTEGER4,partial_result,1,1,info)
final_result=final_result+partial_result

end do
!output final result
write(*,*) “Final result is “,final_result

else ! for child processes
! Send my partial result to parent process
call pvmfinitsend(PvmDataDefault,bufid)
call pvmfpack(INTEGER4,partial_result,1,1)
call pvmfsend(myparent,TAG,info)

end if
call pvmflvgroup(groupname,info) ! leaving group
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call pvmfexit(info) ! exit PVM
end
! of program summation

The constant nhost is the total number of computers in the PVM and this number 

nhost can be  determined by PVM call pvmfconfig().  mytid and myparent specify the task 

id of the current PVM task  and the parent task id, respectively. mytid and myparent can 

be determined by PVM calls pvmfmytid() and pvmfparent().  All tasks join a group, which 

is called summation_group, in order to get the instance number (runs from 0 to the 

number of group members minus 1) of the group. In this example, the instance number is 

used to determine the summation range (represented by varibles from and to) of each 

task. partial_result stores the summation result of each task (from ~ to) and final_result is 

used to save the overall summation (ranges 1 to MAX). Message passings are 

accomplished by PVM routines pvmfinitsend(), pvmfpack(), pvmfsend(), pvmfrecv() and 

pvmfunpack(). In this example, the implementations of parent task and child task are 

actually in the same program. The following is the MPI version of  the “summation” 

program. 

 
program summation_mpi
implicit none
include ‘mpif.h’

integer numprocs,myid
integer length,from,to
integer partial_result,final_result
...
! MPI initialization and get numprocs and myid
call MPI_INIT(ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD,numprocs,ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD,myid,ierr)

length=MAX/numprocs
from=myid*length+1
to=from+length-1
if (myid.eq.numprocs-1) then

to=MAX
end if
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do i=from,to
partial_result=partial_result+I

end do

if (myid.eq.0) then ! for processor 0
! add my partial result
final_result=partial_result
! collect result from other processors
do I=1,numprocs-1
call

MPI_RECV(partial_result,1,MPI_INTEGER,MPI_ANY_SOURCE,TAG,MPI_COMM_WORLD,
status,ierr)

final_result=final_result+partial_result
end do
! output final result
write(*,*) “Final result is”,final_result

else ! for processor from 1 to numprocs-1
! send my partial result to processor 0
call MPI_SEND(partial_result,1,MPI_INTEGER,0,TAG,MPI_COMM_WORLD,&

ierr)
end if
call MPI_FINALIZE(rc) ! exit MPI
end ! of program summation_mpi
 

myid and numprocs are the processor ID and the total number of processors in use. The 

processor ID runs from 0 to numprocs-1 and can be efficiently used for the summation 

program, as shown above. Messages passing are accomplished by MPI calls 

MPI_SEND() and MPI_RECV().  For MPI, the number of processors used in the program 

is decided by the command line parameter, for example, mpirun –np 8 summation means 

that eight processors will be used in the parallel program. 

3.3 Parallel Monte Carlo Simulation with Self-Scheduling Algorithm  

To realize parallel computing in our Monte Carlo simulation of light propagating 

through a tissue slab, we divide the photons in the incident beam into groups. Each group 

of photons is assigned to one processor. If we allow these groups to be processed 

concurrently by multiple processors, the parallel computing is achieved.  
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To make the code accessible and flexible, we design the parallel program for a 

distributed computing environment consisting of different computers, and a self-

scheduling algorithm (master-slave) is used to coordinates the multiple processors. The 

self-scheduling algorithm or master-slave mechanism is appropriate when the the slave 

processes do not have to communicate with each another and the amount of work that 

each slave must perform is difficult to predict [Gropp, 1999].   

The simulation is composed of three independent but interactive processes: the 

master process, the slave process, and the parallel random number generator 

controller(PRNGC) process. To be more accurate, here we will use the term process 

instead of program. The master process is the parent process for both slave and PRNGC. 

It is the central control unit, and its responsibility consists of generating slaves and 

PRNGC process, assgining tasks to slaves, collecting data, saving results and terminating 

slaves and PRNGC. The very first step of the master process is to acquire some basic 

information about the current distributed computing environment. These information 

contains the total number of computers, computer names. Based on these information, the 

master process is able to use the maximum available computing resouce to spawn slave 

processes. After the spawning, usually one slave per computer with each spawning 

followed by assigning a task to that slave,  the master enters a loop. The body of the loop 

consists of receiving result from whichever slave that just finished a task, then sending 

the next to that slave. In other words, completion of one task by a slave is considered to 

be a request for the next task. When a slave returns while master is running out of tasks, a 

signal will be sent to terminate this slave. At the point when all tasks are finished, the 
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master process then terminates the PRNGC process, saves the results, and then ends the 

simulation. Fig. 3.1 shows the relationship between the master, slave and PRNGC 

processes. 

 

 

 

 

 

 

 

 

 

 

 

3.4 PVM Implementation 

In this section, we give a  detailed explaination about our our parallel coding with 

PVM interface. The flowchart shown in Fig. 3.2 gives the principle structure while the 

correspoinding code is listed in Appendex B.1. 

The first step of our master program is to include two header files: fpvm3.h and 

param.h. fpvm3.h is  the PVM header file for FORTRAN and it defines all the constants 

which used for PVM library. param.h is our own header file, which specifies some of the 

 
master 

slave slave slave

PRNGC

Spawn 

Spawn

Message Passing

Fig 3.1 In our parallel computing, photons in the incident beam are divided into groups 
(tasks). Different computer processes different task independently and concurrently. All tasks, 
which running on slaves, are controlled and coordinated by master. When finished, result of 
each task is reported back to master. Master thus collects all the results from these tasks and 
finally combines them to generate the final result.  The combined result should be equivalent 
to the original sequential result. 
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frequently  used constants and arrays in our simulation. NTASK describes the total 

number of tasks we will have for the simulation. taskcount describes how many tasks 

have already been assgined to slaves, and therefore it can indicate the current task 

number. At the beginning, taskcount is initilized to zero. NR0 is a constant that is 

frequently used in our program to describe the resolution of the radius of the circular 

incoming beam area on the surface. It also means that the circle is divided into π(NR0)2 

grids. At the initialization part, subroutine ChangeFromandTo() determines from and to 

for the first task. Variables from and to specify the range one task will span at the 

incoming beam area. For example, if NTASK is equal to one, from and to will span the 

whole circular incoming beam area.  Then the process enters the Clear to Zero part, 

where all data arrays will be cleared to zero. Note that arrays with prefix Final are used to 

save the final results. When we first call subroutine pvmfconfig(), argument nhost returns 

with the number of computers in the current PVM. Then we make nhost-1 extra calls to 

pvmfconfig() in order to extract a detailed list of computer information, say, hostnames 

and  DTIDs. Next, the master process begins to spawn PRNGC and all slaves. With 

argument PVMTaskDefault in subroutine pvmfspawn(), PVM by itself chooses which 

computer to spawn PRNGC. When spawning slaves, we use argument PVMTaskHost in 

pvmfspawn(). Thus PVM is able to spawn slaves on the desired hostnames, which are 

obtained earlier using pvmfconfig(). After spawning all processes, master stops and waits 

for a respond from each slave. The message embeded in the slave’s respond includes only 

the TID of that slave. task_tid is used here to store this TID number. A followed 

pvmfgetinst() call returns the instance number of that slave in the whole slave group. The 



    24

name of the group(groupname) is specified as bmlaser in the Initialization part and the 

instance number ranges from 0 to nhost-1. Each slave corresponds to one instance 

number. Subroutine find_inst_from_dtid() assigns array tids and inst to make sure tids(i) 

and inst(i) refer to the same computer. After all slaves respond, they are ready to receive 

task parameters such as from, to and gen_tid. gen_tid is the TID of the PRNGC. master 

sends each slave these parameters via pvmfinitsend(), pvmfpack() and pvmfsend(). As 

taskcount is increasing, from and to are adjusted correspondingly. Afterwards, the master 

enters its self-scheduling loop. At the beginning of the loop, we call pvmfrecv() to receive 

result from any slave. Since pvmfrecv() is a blocking receive, master just stops and waits 

until it receives a result from any slave. The received message is then unpacked and 

saved in the intermedia arrays. These intermedia arrays are then added to the final arrays 

in the following lines. Next, taskcount is compared with ntask. When taskcount is equal 

to ntask, it means all tasks have been assigned and no more is available. At this case, 

master specifies seed as zero in the message to make it a termination message. If 

taskcount is less than ntask, master then assigns the returned slave another task. Finaly, 

subroutine write_result_to_file() is called to save data files. This is the whole 

implementation of the master with self-scheduling algorithm. 

Each slave process begins with PVM calls pvmfparent() and pvmfmytid(). 

pvmfparent() returns the parent TID and pvmfmytid() returns its own TID. pvmfconfig() is 

used to return nhost , which is the total number of computers in the current PVM. All 

slaves then join the same group bmlaser by calling pvmfjoingroup(). Next, slave sents its 

TID to master and call pvmfbarrier() to make sure all the slaves have joined the bmlaser 
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group. slave then enters a loop. At the beginning of the loop, slave calls pvmfrecv() and 

pvmfunpack() to receive arguments, eg. from and to, from master. If it is a termination 

signal (seed=0), slave steps out of the loop and ends. Otherwise, it calls simulation() to 

run the task that specified with from and to. The results returned with simulation() are 

then send to master. 

3.5 MPI Implementation 

In this section, we give a  detailed explaination about our our parallel coding with 

MPI interface. The flowchart is shown in Fig. 3.3 while the correspoinding code can be 

found in Appendex B.2. 

In our MPI implementation, the code for process master, slave and PRNGC are 

combined into one program. Our MPI code is also based on the self-scheduling 

algorithm, but for simplicity we didn’t use dynamic task allocation as that in the PVM 

code. The processor number (myid) for each computer determines which actual process 

(master, slave or PRNGC) will be run. For example, computer with processor number 0 

runs the master process, computer with processor number numprocs-1 runs PRNCG and 

computers with processor number 1 to numprocs-2 will be running slave. Each computer 

can have more than one processes, with one processor number corresponds to one 

process. For example, let’s assume we have 10 computers and on the command line we 

use mpirun –np 21 mpi_control to start our MPI program. Once the program is running, 

master will be running on computer with processor number 0. PRNGC will be running on 

computer with processor number 20. As we only have 10 computers, the master, PRNGC 

and one slave process are actually running on the same computer, with processor number 
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0, 10, 20, respectively. The implementations for master, slave and PRNGC are almost as 

the same as the PVM implementation.  
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Fig. 3.2  Flowchart for PVM implentations 
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Fig. 3.3  Flowchart for MPI implentations 
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3.6 Parallel Computing Network 

To facilitate our parallel computing needs, a 32-node workstation cluster with a 

dual-CPU server has been established. For the workstations, we use PCs with Pentium 

Celeron® CPU each at 433~500 MHz. The server has two Pentium® III CPUs with each 

at 600 MHz. The combined peak performance is over 16Gflops (1 Gflops= 1*109 

floating-point operations per second) and combined hard disk storage exceeds 190 GB. 

The workstations are connected via a high-speed network with a maximum transmission 

rate at 100M bits/sec so that the message-passing overhead for our parallel Monte Carlo 

calculation is negligible.  

Begin

Initialize seeds,
indexes and spaces

Waiting for requests
from slaves

Send the current
index to this slave

Fig. 3.4  Flowchart for PRNGC 
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Fig. 3.5 The architecture of our workstation cluster and server. The
server shares its resources with workstations via NFS.  
 

The operating system we use for both server and clients is Red Hat Linux. The 

architecture of our workstation cluster is shown in Fig 3.5. In our network design, 

 software packages and user account resources are on the server and workstations 

these resources via NFS (Network File System). The current software resources 

ble to the users are FORTRAN 77, C and C++ compilers from GNU, FORTRAN 

and HPF (High Performance FORTRAN) from Portland Group, MPI and PVM 

l computing interface libraries, and SPRNG libraries. Please refer to Appendix A 

tails about the system installation, setup and administration. 



 4. Random Number Generator 

In the Monte Carlo simulation of tissue scattering, there are many random 

processes where random numbers are needed, such as determining the total distance of 

photon’s propagation, the distance between each scattering and the propagation direction 

after each scattering. Therefore, the properties of a random number generator (RNG) are 

crucial to our simulation. In this chapter, we will first give a brief discussion on the basic 

algorithms for both serial RNG and parallel RNG, and then present our implementations 

of parallel RNG and associated statistical testing results in detail.  

4.1 Sequential Random Number Generator Algorithms 

The most commonly used random number generators are Linear Congruential 

Generator (LCG) [Lehmer, 1949] and Lagged Fibonacci Generator (LFG) [Knuth, 1981].  

LCG is often referred to as the Lehmer generator in the early literature. The linear 

recursion underlying LCGs is: 

Xn = a Xn-1+b  (mod m)          (4.1.1) 

where m is called modulus, and a and c are positive integers called multiplier and 

increment, respectively. The recurrence will eventually repeat itself, with a period that is 

obviously no greater than m. If m, a and c are properly chosen, the period will be reach 

maximal length as m. In this case, all possible integers between 0 and m-1 occur at some 

point, so any initial “seed” choice of X0 is as good as any other.  

The LCG has the advantage of being very fast, requiring only a few operations 

per call, hence its almost universal use. It has the disadvantage that it is not free of 
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sequential correlation on successive calls. If k random numbers at a time are used to plot 

points in k dimensional space, then the points will not tend to fill up the k-dimensional 

space, but rather will lie on (k-1)-dimensional planes. There will be at most about m1/k 

such planes. If the constants m, a and c are not very carefully chosen, there will be even 

fewer than m1/k. LCGs also have the weakness of having their low-order (least significant) 

bits much less random than their high-order bits [Press, 1992]. 

LFGs becomes increasing popular since they can offer a simple method for 

obtaining sequence of very long periods. The recursion relation of a LFG can be 

described as:  

Xn = Xn-p Θ Xn-q          (4.1.2) 

where p and q are lags, and Θ is any binary arithmetic operation, such as addition, 

multiplication and bitwise exclusive OR function (XOR).  It is important that the 

parameters p, q and Θ be carefully chosen in order to provide good randomness 

properties and the largest possible period. Increasing the lags can improve the 

randomness properties of the generator. Empirical tests have shown that when 

multiplication is used, LFG has the best randomness properties., with addition (or 

subtraction) being next best, and XOR being by far the worst.  

When combining two different RNGs together, in many circumstances, we can 

achieve an improved random number sequence. For example, L'Ecuyer [L'Ecuyer, 1993] 

has shown how to additively combine two different 32-bit LCGs to produce a generator 

that passes all known statistical tests and has a long period of around 1018, thus 

overcoming the major drawbacks of standard 32-bit LCGs [NHSE Review, 1996].  
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4.2 Parallel Random Number Generator Algorithms 

The basic idea under many parallel random number generators is to parallelize a 

sequential generator by taking the elements of the sequence of pseudo-random numbers it 

generates and distributing them among the processors in some way.  An ideal parallel 

random number generator should have the following qualities: 1. There should be no 

inter-processor correlation. 2. Sequences generated on each processor should satisfy the 

qualities of serial random number generators. 3. It should work for any number of 

processors. 4. There should be no (or large size) data movement between processors. 

To parallelize a sequential RNG, in general, there are three approaches: sequence 

splitting, leapfrog and independent sequence. In the sequence splitting method, a serial 

random number sequence is partitioned into non-overlapping contiguous section and each 

section is assigned to one processor. For example, if the length of each section is L, the 

random number subsequence for the pth processor will be: 

XPL,XPL+1,XPL+2,…,         (4.2.1) 

Sequence splitting method requires a fast way to advance the serial sequence. But 

a possible problem with this method is that although the sequences on each processor are 

disjoint (i.e. there is no overlap), this does not necessarily mean that they are 

uncorrelated. In fact it is known that LCG with modulus a power of 2 have long-range 

correlations that may cause problems, since the sequences on each processor are 

separated by a fixed number of iterations (L). Other generators may also have subtle long-

range correlations that could be amplified by using sequence splitting.  

In the leapfrog method, the subsequence of the pth processor can be described as: 
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 XP,XP+N,XP+2N,…,        (4.2.2) 

so that the sequence is spread across processors in the same way as a deck of cards is 

dealt in turn to players in a card game. Leapfrog method again has the problem that long-

range correlations in the original sequence can become inter-processor correlations in the 

parallel generator.  

Independent sequence method is a simple way to parallelize a lagged Fibonacci 

generator, which runs the same sequential generator on each processor, but with different 

initial lag tables (or seed tables). In fact this technique is not different from what is done 

on a sequential computer, when a simulation needs to be run many times using different 

random numbers. In that case, the user just chooses different seeds for each run, in order 

to get different random number streams. The initialization of the seed tables on each 

processor is a critical part of this algorithm. Any correlations within the seed tables or 

between different seed tables could have dire consequences. However this is not as 

difficult as it seems - the initialization could be done by a combined LCG, or even by a 

different LFG (using different lags and perhaps a different operation). A potential 

disadvantage of this method is that since the initial seeds are chosen at random, there is 

no guarantee that the sequences generated on different processors will not overlap. 

However using a large lag eliminates this problem to all practical purposes, since the 

period of these generators is so enormous that the probability of overlap will be 

completely negligible. 
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4.3 Parallel RNG implementations for Monte Carlo Simulation 
 

An appropriate RNG needed in our simulation must be able to generate a 

sequence of random numbers satisfying statistical tests for randomness, uniformly 

distributed in the full range from 0 to 1, not correlated, and have long period within the 

acceptable error ranges. The implementation of the RNG should be easily ported to other 

system.  

4.3.1 Revised RNG RAN4 

After careful study of many RNGs, we have adopted a RNG called RAN4 from 

Numerical Recipes [Press, 1992] as the starting point for a portable parallel RNG. The 

original RAN4 in Numerical Recipes only supports 32-bit system such that it has a 

maximum period of 232. We extend it to support 64-bit integers in order to achieve a long 

period of 264. Other modifications we made are: removed the initialization part of the old 

RAN4 and increased the function’s argument number to two, one is idums and the other is 

idum. idums is the initial seed and should keep unchanged all the time. idum is the index 

number of the random sequence started from 1. Unless otherwise indicated, RAN4 in the 

text below refers to the modified version.  

RAN4 is based on the Data Encryption Standard (DES), and its implementation 

consists of two parts. The first part of RAN4 is the DES encryption part, which basically 

transforms one 64-bit integer into another 64-bit integer by doing bits shuffling and 

mixing. The subroutine for this part is called psdes(), which is listed below, 

 
SUBROUTINE psdes(lword,irword)
implicit none
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integer*8 irword,lword,NITER
PARAMETER (NITER=4)
integer*8 i,ia,ib,iswap,itmph,itmpl,c1(4),c2(4)

SAVE c1,c2
DATA c1 /Z'BAA96887E171D32C',Z'1E17D32CAB9A6887',

+ Z'03BCDC3CF0331D2B',
+ Z'0F33D1B2B40F85B3'/, c2 /Z'4B0F3B5878E4f3C0',
+ Z'E874F0C35596A6C5',
+ Z'6955C5A646AC55A7', Z'55A7CA464B0F3B58'/

do i=1,NITER
iswap=irword
ia=ieor(irword,c1(i))
itmpl=iand(ia,Z'FFFFFFFF')
itmph=iand(ishft(ia,-32),Z'FFFFFFFF')
ib=itmpl**2+not(itmph**2)
ia=or(ishft(ib,32),iand(ishft(ib,-32),Z'FFFFFFFF'))
irword=ieor(lword,ieor(c2(i),ia)+itmpl*itmph)
lword=iswap

end do

return
END ! subroutine psdes

 

Compare with the original psdes() in Numerical Recipes, we extend the 32-bit 

integers constants c1 and c2 to 64-bit and make sure each of them has 32 1-bits and 32 0-

bits. We also converse all 16-bit shift operation to 32-bit shift operation. The two 

arguments - lword and irword - of psdes() are now both 64-bit integers, which are 

defined as integer*8 in FORTRAN. The nonlinear function g [Press, 1992] is 

implemented in the loop between do and end do ,and  it consists of  64-bit integer 

masking, shifting, mixing and multiplication. NITER is the total number of iterations, we 

choose 4 here for NITER in order to make sure the generated random number sequence 

has a good randomness properties. After all the multiplication and bits shuffling, we 

obtain a 64-bit random number lword, which is also the output argument. In FORTRAN, 
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all integers are defined as signed integers, therefore the returned value lword must range 

from –263 to 263-1.  

The second part of RAN4, which manages data initialization and converting, is 

shown below, 

FUNCTION ran4(idums,idum)
implicit none

real*8 ran4
integer*8 idums,idum
integer*8 irword,lword
real*8 twoto64

real*8 twoto64,tmp

twoto64=18446744073709551615.00

irword=idum
lword=idums
call psdes(lword,irword)

tmp=irword*1.0

if (tmp.lt.0) then
tmp=tmp+twoto64+1.0

end if

ran4=min(tmp/twoto64,1-(1e-18))
ran4=max(tmp/twoto64,1e-18)

idum=idum+1

return
END

 

Constant twoto64 equals to 264. The two arguments, idums and idum, go through 

routine psdes() via temporary integers lword and irword. The output random number, 

ranging from –263 to 263-1,  is then saved again as irword and converted to a double 

precsion number (real*8) spanning from 0 to 264.  This number is further divided by 264 

to normalize the number to the range between 0 and 1.  



    38

4.3.2 Sequence Splitting with RAN4 

An extremelly useful feature of RAN4, is that it allows random access to the nth 

random value in a sequence, without the necessity of first generating values 1 … n-1. 

The nth random number can be easily acquired by calling function ran4(seed, n). This 

property is shared by any random number generator based on hashing [Press, 1992]. 

Using this property, we can achieve a fast and efficient parallel RNG, with either 

sequence splitting or leapfrog technique. In our implementation, we use the sequence 

splitting method to separate the random number sequence (with a period of 264)  into 

equal-length sections. These sections are assigned on first come first serve basis. 

Whenever a slave is running out of its sub-sequence, it will establish a connection to the 

PRNGC to request a new one. In our implementation, PRNGC just send back the index and 

length of next available sub-sequence to the applicant. The “real” random number is 

actually generated by each slave process itself. The codes for PRNGC and the parallel 

RAN4() are listed below, 

program PRNGC
implicit none
include 'fpvm3.h'

integer RNGreq_tag,RNGreq_num,RNGsend_tag
integer bufid,info
integer bytes,msgtag,tid
integer*8 index(1:6)
integer seed(1:6)
integer space(1:6)
integer i
integer*4 index_h,index_l
integer*8 tmp_index

!**********************
! Initilization
!**********************
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RNGreq_tag=911
RNGsend_tag=119

seed(1)=4984292
seed(2)=83458335
seed(3)=751608345
seed(4)=126587347
seed(5)=4326454
seed(6)=1093732

space(1)=1000000
space(2)=1000000
space(3)=1000000
space(4)=1000000
space(5)=1000000
space(6)=1000000

do i=1,6
index(i)=1

end do

!**********************

do while (RNGreq_tag.eq.911)

!**************************
! Get a request from a task
!**************************

call pvmfrecv(-1,RNGreq_tag,bufid)
call pvmfunpack(INTEGER4,RNGreq_num,1,1,info)
call pvmfbufinfo(bufid,bytes,msgtag,tid,info)

!***************************************
! Send that task a random number or seed
!***************************************

call pvmfinitsend(PvmDataDefault,bufid)
call pvmfpack(INTEGER4,seed(RNGreq_num),1,1,info)

! In case PVM doesn't support INTEGER8
tmp_index=index(RNGreq_num)
index_l=iand(tmp_index,Z'FFFFFFFF')
index_h=iand(ishft(tmp_index,-32),Z'FFFFFFFF')
call pvmfpack(INTEGER4,index_l,1,1,info)
call pvmfpack(INTEGER4,index_h,1,1,info)

call pvmfpack(INTEGER4,index_l,1,1,info)
call pvmfpack(INTEGER4,index_h,1,1,info)

!*** Reserved for dynamic space here ***
call pvmfpack(INTEGER4,space(RNGreq_num),1,1,info)

call pvmfsend(tid,RNGsend_tag,info)
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index(RNGreq_num)=index(RNGreq_num)+space(RNGreq_num)

end do

end ! of program PRNGC

 

The basic pricinple of  the PRNGC is very straightforward. It keeps the initial seed 

of the random number sequence and the current index as global variables to each slave. 

The length of the sub-sequence is fixed as 1*107 in our program, but it can be adjusted 

dynamically. Basically, what the PRNGC does is just staying there and waiting for requests 

from slave processes. As soon as it receive a request, it assigns a new sub-sequence (or 

block) to the slave applicant and sends back the current index. In our program, each 

process needs more than one random number sequence (currently we need 6 random 

number sequence for each process). The seeds and lengths for these random number 

sequence are defined as array seed and array space, respectively. As PVM for Solaris, as 

well as Red Hat Linux, supports only 32-bit integer (integer*4), the 64-bit index has to be 

divided into two 32-bit integer and sent separately. One of the two 32-bit integer contains 

the high order bits and the other contains the low order bits. At the recevier side, which is 

in fuction ran4(), the two 32-bit integers are recomposed to generate the 64-bit index. 

FUNCTION Get_RND_Num(which_one)

implicit none
include 'fpvm3.h'

external ran4_real
real*8 ran4_real

integer which_one
real*8 ran4
integer gen_tid
integer RNGreq_tag,RNGreq_num,RNGrev_tag
integer info,bufid
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integer seed(1:6),space(1:6),count(1:6)
integer*8 index(1:6)
integer i
integer RNGreq_tag,RNGreq_num,RNGrev_tag
integer*8 tmp_index,tmp_index0
integer*4 index_l,index_h

common/generator/gen_tid

save seed,space,index

RNGreq_tag=911
RNGrev_tag=119

if (which_one.lt.0) then
which_one=-which_one
count(which_one)=1

call pvmfinitsend(PvmDataDefault,bufid)
call pvmfpack(INTEGER4,RNGreq_num,1,1,info)
call pvmfsend(gen_tid,RNGreq_tag,info)

call pvmfrecv(gen_tid,RNGrev_tag,bufid)

call pvmfunpack(INTEGER4,seed(which_one),1,1,info)

! In case PVM doesn't support integer*8-----------
call pvmfunpack(INTEGER4,index_l,1,1,info)
call pvmfunpack(INTEGER4,index_h,1,1,info)

tmp_index0=index_h
tmp_index0=ishft(tmp_index0,32)

tmp_index=index_l
tmp_index=ishft(tmp_index,32)
tmp_index=ishft(tmp_index,-32)
tmp_index=ior(tmp_index,tmp_index0)

index(which_one)=tmp_index
!------------------------------------------------
call pvmfunpack(INTEGER4,space(which_one),1,1,info)

end if

!*****************
! PVM routines
!*****************

if (count(which_one).lt.space(which_one)) then
ran4=ran4_real(seed(which_one),index(which_one))
index(which_one)=index(which_one)+1
count(which_one)=count(which_one)+1

else
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RNGreq_num=which_one

call pvmfinitsend(PvmDataDefault,bufid)
call pvmfpack(INTEGER4,RNGreq_num,1,1,info)
call pvmfsend(gen_tid,RNGreq_tag,info)

call pvmfrecv(gen_tid,RNGrev_tag,bufid)

call pvmfunpack(INTEGER4,seed(which_one),1,1,info)

! In case PVM doesn't support integer*8-----------
call pvmfunpack(INTEGER4,index_l,1,1,info)
call pvmfunpack(INTEGER4,index_h,1,1,info)

tmp_index0=index_h
tmp_index0=ishft(tmp_index0,32)

tmp_index=index_l
tmp_index=ishft(tmp_index,32)
tmp_index=ishft(tmp_index,-32)
tmp_index=ior(tmp_index,tmp_index0)

index(which_one)=tmp_index
!-------------------------------------------------
call pvmfunpack(INTEGER4,space(which_one),1,1,info)

ran4=ran4_real(seed(which_one),index(which_one))
index(which_one)=index(which_one)+1
count(which_one)=1

end if

return

end

The function Get_RND_Num() is called by each process when it needs a random 

number. Therefore, the inner mechanism for the splitting sequence and message passing 

is totally transparent to the main simulation program. The main simulation program calls 

Get_RND_Num(), knowning only the random number sequence (stream) number, which is 

in turn represented by integer which_one in the range of 1 and 6. The Get_RND_Num() 

function then determines the availability of current sub-sequence using a integer called 
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counter, when counter is less or equal than space, it means the current sub-sequence 

still have random number unused. If counter is larger than space, a request is then made 

to PRNGC, and the program waits for the next sub-sequence to be assigned and thus 

determines the random number using the new index.  

4.3.3 Testing Result of RAN4 

To ensure the 64-bit RAN4 has the required statistical properties. We carried out 

intensive statistic tests. Table 4.1 shows the testing results we obtained for RAN4 and 

compared them with that of another RNG, RAN2 [Press, 1992]. RAN2 is a well tested 

RNG provided by Numerical Recipes and it combines and shuffles two LCGs’ random 

number sequences in order to break up serial correlations. In this way, RAN2 can reach a 

period of 2*1018 [Press, 1992]. We didn’t use RAN2 for our parallel simulations because it 

is not suitable for parallel computing. 
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Table 4.1 Statistic testing results for RAN4 and RAN2

 

 RAN4 RAN2 

Standard Deviation 131072.37888723 131072.37724003 

Maximum Value 0.99999999987876 0.99999999987876 

Minimum Value 2.2378115625745*10-10 2.2378115625745*10-10 

Random Numbers  in 0~1*10-6 9906(10000) 10071(10000) 

in 1-1*10-6~1 10043(10000) 9953(10000) 

Random Numbers  in 0~1*10-9 8(10) 2(10) 

in 1-1*10-9~1 11(10) 9(10) 

 

he whole testing procedure is described below: 

We made RAN2 and RAN4 each generate 1*1010 random numbers and divided the 

pace between integers 0 and 1 into 100000 cells evenly.  We want to see if the 1*1010 

andom numbers are evenly distributed in those tiny cells in order to compare the results 

f RAN2 and RAN4. Our tests consist of standard deviation test, maximum and minimum 

alue test and counting the total random number belongs to our interested range. 

We are concerned in the uniform distribution of the generated random numbers 

etween 0-1, particularly near the ending regions, i.e. 0~1*10-8 and 1-1*10-8~1 because 

andom numbers in those regions are crucial for us to determine the total number of 

nattenuated photons in the transmitted light. For some RNGs, these regions are 

nadvertently prohibited, which means that there is no or too few random numbers 
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existing in these regions. We must avoid this type of RNG in our simulation, as well as 

those with random numbers not evenly distributed in the regions.  Table 4.1 gives the 

results for both RAN4 and RAN2. The values in the parenthesis are the expected values. 

The testing suites in a parallel random number generator package, the SPRNG 

(Scalable Parallel Random Number Generator Libraries from NCSA), are also employed 

to test RAN4 with both sequential and parallel implementations. The testing suite includes 

Gap test, Max of t test, Permutations test, Runs up test, Sum of independent distributions 

test and Random-walk test. RAN4 passes all the tests in the suite and its results are 

compared with the one of the well-tested RNGs, i.e. Comined Multiple Recursive 

Generator in SPRNG and the results showed the same satisfying KS percentiles [Brock, 

2000]. All these tests prove that RAN4 is a good RNG for both sequential and parallel 

implementations. 

4.3.4 Task Number Dependence 

It has been well known that the result of parallel computing depend on its total 

task number. In our Monte Carlo simulation, we also noticed that the results have 

variations if using different number of tasks. Fig. 4.1 shows the difference in the light 

distribution at the focal point along z-axis, between task number 20 and 10, with RAN4 

and PVM. Fig. 4.2 shows the difference in the light distribution between task number 10 

and 40, again with RAN4 and PVM. 

To remove the possibility that the RNG of RAN4 causes this imperfection, we 

employed one of the RNGs in SPRNG for a test simulation with the same parameters 

used in Fig. 4.1. The result is presented in Fig. 4.3, it shows the similar characteristics of 
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task dependence as of that of Fig 4.1 where RAN4 was used. Therefore, we conclude that 

the task-dependence is not due to the RAN4, but to the nature of parallel computing. In 

the future, new approaches need to be developed to reduce this imperfection. 

 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4.1 Light distribution along the z-axis near the focal point for a converging
beam incident on to a tissue slab. The solid line shows the result with 20 tasks, and
the dotted line shows the result with 10 tasks. In this simulation, µt=0.702, g=0.9,
photon number=5.632*107. The simulation is accomplished with PVM and RAN4. 
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Fig. 4.2 Light distribution along the z-axis near the focal point for a converging 
beam incident on to a tissue slab. The curve with higher peak shows the result
with 40 tasks, and the curve with lower peak shows the result with 10 tasks. In
this simulation, µt=0.702, g=0.48, photon number=1.98*108. The simulation is 
accomplished with PVM and RAN4.
 

 
Fig. 4.3 Same as Fig. 4.1 except that it is calculated with a RNG of SPRNG using 
MPI. 



 5. Results and Discussions 
 

In this chapter, we present the results of the parallel Monte Carlo simulation of a 

converging light beam propagating through a slab of turbid medium. Particularly, we 

studied light distribution near the focal point, dependence of the reflectance, 

transmittance, and absorption of the incident light on the parameters µt and g, and 

statistical distributions of the reflected and transmitted photons. 

5.1 Light Distribution near Focal Point 

As described in Chapter 2, we are interested in the distribution of the transmitted 

light near the geometric focal point at z=Zf. For a cw converging Gaussian beam with N0 

photons per unit time incident to a tissue slab of thickness D, according to Eq. 2.1.11, the 

number of unttenuated photons in the transmitted light arriving at the focal point is given 

by: [Wu, 2000] 

 
2

0
1 2 0 0(1 )(1 )

2
t D tt

uatt t

Dw
N R R N e N e dt

F
µ µ ∞− −− − − ∫�                                       5.1.1 

 
where 0 2 / / 2tt F w Dw Fµ= + , and R1, R2 are the reflectivity at the entrance and exit 

surfaces of the slab, respectively.  For the cases we considered in this paper with F 

=63mm and w = 4.86mm, we find F >> w, and therefore the second term in Eq. 5.1.1 can 

be neglected. So we have 

 1 2 0(1 )(1 ) t D
unattN R R N e µ−− −� .             5.1.2 

 
This provides the expected photon number peak at the focal point. Eq. 5.1.2 also 

indicates that the coherent part of the incident radiance is attenuated exponentially with 
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the optical depth µt D. Thus, measuring of this peak against the slab thickness can lead to 

the determination of the attenuation coefficient µt, or vice versa.  

To study such dependence of the peak height on µt, we carried out simulations of 

a converging laser beam propagating through a slab of diluted intralipid solution using 

the parallel technique. Through the simulations, the slab thickness is fixed at D =17mm 

while µt is changed from 0.546 (mm-1) to 1.092 (mm-1) through the variation of the 

concentration of the solution slab. The optical parameters of intralipid solution are given 

by an albedo (µs/µa) of 0.9666, and a refractive index n=1.33 and g=0.48 [Staveren, 

1991]. We chose the transverse dimension of the slab in the xy-plane to be of 

50mm×50mm to accommodate the simulation, and the parameters of the incident 

Gaussian beam to have radius w = 4.86mm, cone angle α = 8.82o and focal length 

F = 63mm.  The unattenuated photons distribute along a spreading line in the z-axis 

centered at z = Zf = 67.3mm, which is referred to as the focal point. The grid cells of the 

deposit region are cubic with 50µm sides and the region occupies a (16mm)3 cube 

centered at the focal spot.    

Results for all the values of µt up to 1.09 (mm-1) show a well-defined peak formed 

by the unattenuated photons at the focal point of the beam and a uniformly fluctuating 

background around the peak. Because the photons of the incident beam are treated as a 

spherical wave in our Monte Carlo simulations, the unattenuated photons propagates 

toward the z-axis after emerging from the slab and form a peak at the focal point. This 

peak in photon density has a significant width along the z-axis because of the aberrations 

of the wavefront suffered at the plane interfaces of the slab while appear as a single point 
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at the focal point in the xy-plane.  To produce a background in the photon number per cell 

with negligible fluctuation, there is a minimum for the number of photons N0 required for 

the incident beam even when µt is small. In our cases it is 8
0 3.5 10N = × for 

10.858t mmµ −≤ . And as µs increases, more photons are needed to reduce statistical 

fluctuation for the peak at the focal point. For example, the number N0 is increased to 

 

91.14 10×  for 10.936t mmµ −= , 92 .2 1 0×  for 11.014t mmµ −= ,  and 95 .6 1 0×  

for 11.092t m mµ −=  . Fig. 5.1 to 5.8 show all sets of photon density distribution in yz-

plane and xy-plane corresponding to the case of µt = 0.546(mm-1), µt = 0.624(mm-1), µt = 

0.702(mm-1), µt = 0.780(mm-1), µt = 0.858(mm-1), µt = 0.936(mm-1), µt = 1.014(mm-1) and 

µt = 1.092(mm-1), respectively. Fig. 5.9 shows the corresponding light distributions along 

the Z-axis near the focal point with different µt. 

As a specific example when µt = 0.936(mm-1), shown in Fig. 5.6, a total of 

91.14 10× photons are injected at the entrance surface of the slab phantom to produce a 

photon density in background and peak with negligible statistical fluctuations. 

Considering the reflection at the entrance surface, a total of 91.115 10× photons enter the 

slab and are tracked by the program. Twenty tasks are used in the parallel calculation, 

and it takes a 9-node partial PC cluster 18 hours to finish.  

It can be easily noticed that as µt increases, the peaks for the unattenuated photons 

are becoming lower even though more photons are involved in the simulation.  
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Fig 5.1 Parallel Monte Carlo simulation results of photon density distribution in (a) yz-
plane and (b) xy-plane near the focal point for a converging laser beam transmitting 
through a tissue phantom slab with µt = 0.546(mm-1). The peak formed by unattenuated 
photons is located at the focal point z = Zf = 67.3mm and y = 0. 

Fig 5.2 Same as Fig 5.1 except that µt = 0.624(mm-1) 

(a) (b) 

(a) 
(b) 
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Fig 5.3 Same as Fig 5.1 except that µt = 0.702(mm-1) 

Fig 5.4 Same as Fig 5.1 except that µt = 0.780(mm-1) 

(b) 

(b) (a) 

(a) 
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(a) (b) 

Fig 5.6 Same as Fig 5.1 except that µt = 0.936(mm-1) 

Fig 5.5 Same as Fig 5.1 except that µt = 0.858(mm-1) 

(a) (b) 
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Fig 5.7 Same as Fig 5.1 except that µt = 1.014(mm-1) 

Fig 5.8 Same as Fig 5.1 except that µt = 1.092(mm-1) 

(a) 

(a) 

(b) 

(b) 
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5.2 Unattenuated Photon Density at Focal Point 

Fig. 5.10 shows the dependence of the number of unattenuated photons arrived at the 

focal point on the attenuation coefficient µt when µt is changed from 0.546 (mm-1) to 

1.092 (mm-1).  The unattenuated photons at the focal point is obtained by subtracting the 

Fig. 5.9 Parallel Monte Carlo simulation results of photon density distribution along the Z-
axis near the focal point for a converging laser beam transmitting through a tissue phantom 
slab with: (a) µt = 0.546 (mm-1); (b) µt = 0.624 (mm-1), (c) µt = 0.702 (mm-1), (d) µt = 0.780 
(mm-1), (e) µt = 0.858 (mm-1), (f) µt = 0.936 (mm-1), (g) µt = 1.014 (mm-1),(h) µt = 1.092 
(mm-1), respectively. The peak formed by unattenuated photons is located at the focal point 
z = Zf = 67.3mm and y = 0. 

(a) (b)

(h)(g)

(d) (e) (f)

(c)
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background formed by the diffusely scattered photons from the observed peak.  To do 

that, we first obtain the photon density, or the number of photons per cell at the focal 

point, Nf, from the light distribution deposition in the yz-plane, and Nf includes both 

unattenuated and diffusely scattered photons. The diffusely scattered photon density Nb, 

i.e. the background in the photon density near the focal point, is obtained by averaging 

the number of photons per cell over the cells in the xy-plane excluding the single cell 

where the peak is located. A simple treatment like this is well justified. First: the deposit 

region is small enough so that the background is relatively flat. Second: due to the  

 

geometric optical approximation adopted in the Monte Carlo simulation, all the 

unattenuated photons are focused to a single cell in the xy-plane at z = Zf, so by excluding 

that single cell, the xy-plane distribution is dominated by that of the diffusely scattered 

Fig. 5.10 The dependency of unattenuated photons near the focal point on the ttenuate coefficient 
µt . The solid circles are the simulation results, while the straight is the predicted value from Eq. 
5.1.2. 
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photons near the focal point. In this way we can obtain the unattenuated photons at the 

focal point by Nunatt = (Nf − Nb) for each slab of µt. The results shown in Fig. 5.10 (solid 

circle) are in excellent agreement with the radiative transfer theory prediction (the solid 

line) given by Eq. 5.1.2. This proves directly that the photon density peak at the focal 

point consists of the unattenuated photons on top of the diffusive background formed by 

the multiply scattered photons. 

The steep increase in the total number of tracked photon as a result of large 

optical depth clearly demonstrates the urgent need to adopt the parallel computing 

technique for conducting high performance computation in the biomedical optics.  

5.3 Transmission, Reflection and Absorption 

We also studied the dependence of the reflectance, transmittance, and absorption 

of the incident light on the optical parameters µt and g.   

We define the total number of reflected, transmitted, and absorbed photons as 

Nreflct, Ntransm and Nabsorb, respectively, and the total photon number of incident photon as 

N0, Fig. 5.12 shows the dependence of Nabsorb/N0, Ntransm/N0 and Nreflct/N0 on µt with 

different g values. When attenuation coefficient µt is small, more photons will be 

transmitted through the tissue slab. As µt increases gradually, more photons will be 

absorbed inside the tissue. We also notice that Nreflct/N0 almost is constant as µt increases. 

This characteristic fits different g value. Results show that large µt is associated with 

large absorption and less transmission, but reflection is less sensitive to it.  
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Fig. 5.12 shows the dependence of Nabsorb/N0, Ntransm/N0 and Nreflct/N0 on g with 

different µt values. While Ntransm/N0 increases with increasing g, Nreflct/N0 decreases as g 

rises. For Nabsorb/N0, however, an interesting phenomenon is observed: it first increases as 

g increases, but after it reachs certain point, Nabsorb/N0 begins to fall. 
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Fig. 5.11 Dependence of  (a) Nabsorb/N0, (b) Ntransm/N0, and (c) Nreflct/N0 on µt with 
different g.  

(a) 

(b) 

(c) 
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 Fig. 5.12 Dependence of (a) Nabsorb/N0, (b) Ntransm/N0, and (c) Nreflct/N0 on g with 
different µt.  

(a) 

(b) 

(c) 
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5.4 Scattering Statistics of the Reflected and Transmitted Photons 

We have also looked into the statistical distributions of the reflected and 

transmitted photons, and classified them according to the number of scatterings they have 

experienced before they escape the tissue slab. For a given number of scatterings, the 

observed number of photons at a given distance from the axis of the incident beam, i.e. 

the radius ρ, in the focal plane for the transmitted photons or in the entrance plane for the 

reflected photons are plotted in Figs. 5.14 and 5.13, respectively. A total of 5.6*107 

photons participate in the both simulations with g=0.9 and µt=0.858. Other optical 

parameters remain the same as described in Chapter 2.2.  

We can see from Figure 5.14 that the distributions of the number of photons vs 

the radius in the focal plane for a given number of scatterings is very broad. We also 

notice that photons encountering different number of scattering have different 

distributions in the focal plane, and no matter how many times photons are scattered, the 

peak will always occur at the focal point. We also notice that as scattering number 

increases, the peak will first move higher and then lower down, and photons with about 

15 scatterings have the highest peak. That means most transmitted photons have been 

scattered about 15 times. 

In Figure 5.13, we notice that the distributions of the number of photons vs the 

radius in the focal plane for a given number of scattering are much narrower than that in 

Figure 5.14. The curves for fewer scatterings move higher as the number of scatterings 

increase and reach the maximum for 5 scatterings and then drops quickly as the number 

of scatterings increases more. That means, reflected photons are concentrated near the 
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axis of the incident beam when the incident beam have the highest density, and they have 

only been scattered a few times in the tissue. Figs. 5.15 and 5.16 show the same 

scattering distributions except g=0.48. 

 

 

 

 

Fig.  5.13 Results for a given number of scatterings the observed number of
photons in the reflected light at a given distance from the axis of the 
incident beam in the entrance plane. 

Fig. 5.14 Results for a given number of scatterings the observed number of
photons in the transmitted light at a given distance from the axis of the
incident beam in the focal plane. 
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Fig. 5.15 Same as Fig. 5.13 except g=0.48. 

Fig. 5.16 Same as Fig. 5.14 except g=0.48. 



Chapter 6: Summary 

We have carried out large-scale simulations of a converging laser beam propagating 

through a turbid medium of intralipid solutions using parallel Monte Carlo methods. 

Through this research project, we constructed a 32-node UNIX cluster to provide a 

powerful parallel computing environment and successfully converted previous sequential 

codes into parallel codes using both MPI and PVM parallel computing interface software 

packages. In addition, various random number generating algorithms were carefully 

studied and a portable parallel random number generator has been developed for our 

simulations. The outcomes of this research project provide a powerful tool for efficiently 

executing large-scale simulations with low cost in the near future to model light-tissue 

and light cell interactions.  

The parallel computing cluster, including a dual-processor server and 32 client PCs, 

was built on a LAN running on the LINUX operating platform. A server-client model 

was employed where all the clients share the resources on the server. A portable random 

number generator (RNG) has been developed for our parallel Monte Carlo simulations to 

meet the special requirements for parallel computing and has been found satisfactory 

through various statistical tests. In addition, RNGs from a well-tested random number 

generator package, the SPRNG, were used to conduct the simulations for comparison 

with those based on our own RNG, and they agreed well within the statistical error. 

Parallel Monte Carlo codes have been developed to model a converging light beam 

propagating through a tissue phantom in the form of slab using MPI and PVM on the 

cluster environment based on previous sequential codes.[Song, 1999] The parallel 



    65

simulations increased the computation speed by a factor of ten or more in comparison 

with the sequential simulations conducted on supercomputers and therefore, allowed us to 

simulate strong turbid media with photon numbers reaching up to 1010.  

Through the parallel Monte Carlo simulations we demonstrated that the photon 

density at the focal point above a diffusive background decreases exponentially with the 

attenuate coefficient µt, as predicted by radiative transfer theory, and thus confirmed the 

previous conclusion [Song, 1999] that the peak observed at the focal point is formed by 

the unattenuated photons. We have also investigated the dependence of the reflectance, 

transmittance, and absorption of the incident light on the attenuation coefficient µt and 

the asymmetry factor g with the albedo, µs/µt, unchanged. These results show the 

expected behaviors that phantoms with larger µt exhibit larger absorption and smaller 

transmittance. But the reflectance was found to be less sensitive to µt. In contrast, larger g 

was found to cause monotonously increasing transmittance and decreasing reflectance 

while the absorption, however, was found to exhibit a peak as the g increase from 0.48 to 

0.9. By counting the number of scattering suffered by photons inside the phantom, we 

found that most of the photons backscattered into the space outside the entrance surface 

suffer only about 5 scatterings or less and they are likely to be reflected near the axis of 

the incident beam. As for the transmitted photons, they have a much more broad 

distribution in the focal plane and most of them are scattered about 15 time in the tissue. 

This information may worth further studying to explore new medical imaging methods 

based on the non-invasive measurements of light distribution. 
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